Resident nestin+ neural-like cells and fibers are detected in normal and damaged rat myocardium.

نویسندگان

  • Viviane El-Helou
  • Jocelyn Dupuis
  • Cindy Proulx
  • Jessica Drapeau
  • Robert Clement
  • Hugues Gosselin
  • Louis Villeneuve
  • Louis Manganas
  • Angelino Calderone
چکیده

The present study examined whether nestin+ neural-like stem cells detected in the scar tissue of rats 1 week after myocardial infarction (MI) were derived from bone marrow and/or were resident cells of the normal myocardium. Irradiated male Wistar rats transplanted with beta-actin promoter-driven, green fluorescent protein (GFP)-labeled, unfractionated bone marrow cells were subjected to coronary artery ligation. Three weeks after MI, GFP-labeled bone marrow cells were detected in the infarct region, and a modest number were associated with nestin immunoreactivity. The paucity of GFP+/nestin+ cells in the scar tissue provided the impetus to explore whether neural-like stem cells were derived from cardiac tissue. Nestin mRNA and immunoreactivity were detected in normal rat myocardium, and transcript levels were increased in the damaged heart after MI. In primary-passage, cardiac tissue-derived neural cells, filamentous nestin staining was associated with a diffuse, cytoplasmic glial fibrillary acidic protein signal. Unexpectedly, in viable myocardium, numerous nestin+/glial fibrillary acidic protein+ fiberlike structures of varying length were detected and observed in close proximity to neurofilament-M+ fibers. The infarct region was likewise innervated, and the preponderance of neurofilament-M+ fibers appeared to be physically associated with nestin+ fiberlike structures. These data highlight the novel observation that the normal rat heart contained resident nestin+/glial fibrillary acidic protein+ neural-like stem cells, fiberlike structures, and nestin mRNA levels that were increased in response to myocardial ischemia. Cardiac tissue-derived neural stem cell migration to the infarct region and concomitant nestin+ fiberlike innervation represent obligatory events of reparative fibrosis in the damaged rat myocardium.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The phenotype and potential origin of nestin+ cardiac myocyte-like cells following infarction.

Nestin+ cardiac myocyte-like cells were detected in the peri-infarct/infarct region of the ischemically damaged heart. The present study was undertaken to elucidate the phenotype and potential origin of nestin+ cardiac myocyte-like cells and identify stimuli implicated in their appearance. In the infarcted human and rat heart, nestin+ cardiac myocyte-like cells were morphologically and structur...

متن کامل

Nestin+ cells and healing the infarcted heart.

Scar formation following an ischemic insult to the heart is referred to as reparative fibrosis and represents an essential physiological response to heal the damaged myocardium. The biological events of reparative fibrosis include inflammation, the deposition of collagen by myofibroblasts, sympathetic innervation, and angiogenesis. Several studies have further reported that scar formation was a...

متن کامل

Nestin-expressing neural stem cells identified in the scar following myocardial infarction.

Nerve fiber innervation of the scar following myocardial damage may have occurred either via the growth of pre-existing fibers and/or the mobilization of neural stem cells. The present study examined whether neural stem cells were recruited to the infarct region of the rat heart following coronary artery ligation. The neural stem cell marker nestin was detected in the infarct region of 1-week p...

متن کامل

In Vitro Differentiation of Neural Stem Cells into Noradrenergic-Like Cells

Neural stem cells (NSCs) as a heterogeneous multipotent and self- renewal population are found in different areas in the developing mammalian nervous system, as well as the sub-ventricular zone (SVZ) and the hippocampus of the adult brain. NSCs can give rise to neurons, astrocytes and oligodendrocytes. The aim of this study was to differentiate neural stem cells into noradrenergic–like cells in...

متن کامل

Differential gene expression by lithium chloride induction of adipose-derived stem cells into neural phenotype cells

Objective(s): Adipose-derived stem cells (ADSCs), with suitable and easy access, are multipotential cells that have the ability for differentiation into other mesodermal and transdifferentiate into neural phenotype cells. In this study, Lithium chloride (LiCl) was used for in vitro transdifferentiation of rat ADSCs into neuron-like cells (NLCs).<stro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Hypertension

دوره 46 5  شماره 

صفحات  -

تاریخ انتشار 2005